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Abstract

We present a quantitative indirect statistical modeling for predicting rainfall-induced
shallow landsliding. We consider as input layers both static thematic predictors, such
as geomorphological, geological, climatological information, and numerical weather
model’s forecast. Two different statistical techniques are used to combine together5

the above mentioned predictors: a Generalized Linear Model and Breiman’s Random
Forests. We tested these two techniques for two rainfall events that occurred in 2011
and 2013 in Tuscany region (central Italy). Model’s evaluation is measured by means
of sensitivity-specificity ROC analysis. In the 2011 rainfall event, the Random Forests
technique performs slightly better, whereas in the 2013 rainfall event the Generalized10

Linear Model provides more accurate predictions. This study seeks also to establish
whether the rainfall-induced shallow landsliding prediction might substantially benefit
from the information provided by the numerical weather model’s outputs. Using the
variable importance parameter provided by the Random Forests algorithm, we asses
the added value carried by numerical weather forecast, in particular in the rainfall event15

characterized by deep atmospheric convection and heavy precipitations.

1 Introduction

In the last years, in the north-western part of Tuscany region and nearby areas, no-
ticeable heavy rainfall events occurred (Parodi et al., 2012; Sacchi, 2012; Avanzi et al.,
2013; Rebora et al., 2013; Fiori et al., 2014; Buzzi et al., 2014). During these events,20

the rainfall amounts and intensities triggered a great number of shallow landslides,
causing damages, injuries and human losses. Steep slopes and deep valleys induced
a persistently high relief of energy and a shallow landsliding susceptibility.

In this work, we considered two heavy rainfall events occurred in 2011 and 2013,
that affected Lunigiana and Garfagnana in the north-western part of Tuscany region25

(central Italy). We carried out an analysis including a statistical modeling of spatial
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landslide occurrence by using two models: the Generalized Linear Model (hereafter
GLM, McCullagh, 1984; McCullagh and Nelder, 1989) and the Random Forests classi-
fier (hereafter RF, Breiman, 2001).

For both statistical models, we used, as predictors, static geographical layers (re-
ferred also as instability or predisposing factors, e.g. digital elevation model, slope, land5

use, see Sect. 2.2 for further details) characterizing the areas affected by the heavy
precipitations from a geomorphological, geological and climatological point of view.
Moreover, since recently (Schmidt et al., 2008; Segoni et al., 2009; Mercogliano et al.,
2013), the Numerical Weather Prediction’s (NWP) outputs are arising as a promising
tool for the prediction of shallow landslides triggered by precipitation, in the statistical10

models we considered, as dynamical predictors, the forecast achieved by running the
Weather and Research Forecasting (WRF) model (Skamarock et al., 2005; Skamarock
and Klemp, 2008) for the selected dates.

For both rainfall events, we used, as ground truth, the landslides inventory maps,
created via field surveys of the expert personnel of Civil Protection Office (2011 event,15

Lunigiana area) and of the Genio Civile Office (2013 event, Garfagnana area) a few
days after the heavy precipitations.

The approach we adopted, is an attempt to conjugate and integrate the added infor-
mation carried by a regional numerical weather model which operates at the meso-γ
scale (' 2–20 km of spatial resolution), with the micro-γ scale (≤ 20 m of spatial res-20

olution, according to Orlanski, 1975) which is an average value of the mapping unit
of landslide size occurring at the basin scale (Guzzetti et al., 1999, 2005). This goal
is achieved without performing any downscaling of the NWP data (3 km of horizontal
resolution) to a finer resolution. In this way we preserve the original information content
provided by the numerical model.25

Results obtained show how both statistical models (GLM and RF) perform ade-
quately (i.e. we obtain similar results as found in previous studies) in predicting the
shallow landsliding occurrence. In the 2011 rainfall event, the model based on the RF
classifier performs slightly better than that one based on the GLM model, whereas in
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the 2013 rainfall event the GLM model gives more accurate predictions. The evaluation
of the results is performed through the analysis of the Receiver Operating Characteris-
tics Curve (ROC) in terms of the underlying area (AUC), a threshold-independent index
widely used (Frattini et al., 2010).

In the discussion, we assess the relative importance of the added value provided by5

the numerical weather predictions in particular in the event occurred in 2011, where
deep atmospheric convection, yielding high rainfall intensities (mm h−1), characterized
the precipitation type. Using the RF’s variable importance parameter, we point out the
fact that NWP data are relevant for landslide hazard mapping not only because of
predictions on precipitations amounts, but also because of predictions on precipitations10

rate (mm h−1) and on soil water content at different levels below ground.
The positive impact of mesoscale NWP’s outputs, supports the reliability of numerical

forecast and further confirms (Schmidt et al., 2008; Segoni et al., 2009; Mercogliano
et al., 2013) its use for the setting-up of a real-time forecasting chain for the prediction of
the occurrence of rainfall-induced shallow landslides over large areas (basin catchment15

scale).
The paper is organized as follows: in Sect. 2.1 we describe the two rainfall events,

with particular regard to the meteorological and atmospheric features in terms of pre-
cipitation type and rainfall intensities. In Sect. 2.2 we describe the geographical static
predictors used in the statistical models, stressing their importance for landsliding as20

reported in previous works. Section 2.3 provides details about the numerical weather
model used to produce the meteorological dynamical predictors, namely rainfall data
and soil moisture estimates, that feed the statistical models. The design and details of
the statistical modeling framework based on the GLM model and on the RF classifier
are described in Sect. 2.4. The preliminary results for the selected study cases are25

shown in Sect. 3 and discussed in Sect. 4.
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2 Materials and methods

2.1 Description of the study cases and of the areas of interest

As stated in the introduction, we developed the statistical modeling of shallow lands-
liding induced by precipitation, focusing our attention on two heavy rainfall events that
occurred in the north-western part of Tuscany region (central Italy) on 25 October 20115

(Lunigiana) and on 18 March 2013 (Garfagnana). In the following two sub-sections,
we describe the rainfall events from a meteorological point of view and we give a brief
description of the area of interest considering geographical and geomorphological fea-
tures.

2.1.1 Study case 25 October 201110

The first rainfall event, hereafter 25OCT2011, occurred on 25 October 2011 and in-
volved the Lunigiana area belonging to the administrative province of Massa-Carrara
(see inset figure in the left side of Fig. 1). The area is located along the Appennine
chain and is mainly mountainous (highest peaks reaches almost 2000 m). It is very
close to the Ligurian Sea gulf from which it is only a few kilometers away. Due to its15

orography and geographical position, the area represents a natural barrier for the At-
lantic humid air masses and frequently the precipitation amounts reaches or exceeds
3000 mm per year, making this area one of the more rainy in Italy. From a hydrological
point of view, it is characterized by the presence of one main river basin (Magra basin)
having an area of about 992 km2 (in the administrative province of Massa-Carrara).20

A detailed study on the critical thresholds able to trigger shallow landslides in this area
was carried out by Giannecchini (2006). Avanzi et al. (2013) studied the fragility of the
territory by analyzing the damages occurred in two heavy rainfall events in 2009 and
2010 (in this latter paper the study area was slightly larger than that one here under
exam).25
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From a geological point of view, following Di Naccio et al. (2013), Northern Apennines
are a NW–SE-trending belt formed by NE-verging tectonic units stacked since the late
Oligocene after the collision of the Corsica-Sardinia and Adria continental blocks. Main
tectonic units are (i) the Liguride allochthon, (ii) the Subligurian unit, and (iii) the Tuscan
unit (for a comprehensive synthesis and review see Argnani et al., 2003 and references5

therein).
From a meteorological point of view, the 25OCT2011 rainfall event was deeply in-

vestigated by Buzzi et al. (2014) using a numerical weather model and by Rebora
et al. (2013) using the measurements available from a large number of sensors, both
ground based and space-borne. In this latter paper, the authors concluded that the10

large scale features of the event and the complex geographical characteristics of the
area, determined the conditions for the persistence of heavy precipitation systems
over the same region, i.e. organized and self-regenerating mesoscale convective sys-
tem (MCS). In the area of interest, rainfall amounts were registered by the remotely
automated weather station network operated by the National Civil Protection Depart-15

ment. The maximum cumulative rainfall was recorded at the Pontremoli rain-gauge
(Magra river valley) with maximum rainfall rates of 374 mm (24 h)−1, 317 mm (12 h)−1,
243 mm (6 h)−1, 158 mm (3 h)−1 and 67 mm (1 h)−1. As stated in Rebora et al. (2013)
this rainfall event has the key atmospheric conditions for heavy precipitations and se-
vere flood events over complex orography, i.e.: (i) conditionally or potentially unstable20

air masses, (ii) moist low-level winds, (iii) steep orography that helps to release the
conditional instability associated with the low-level jet, and (iv) a slowly evolving synop-
tic pattern that slows the advance of the heavy precipitation system, hence increasing
their persistence.

The landslide inventory map for this event was created by the expert personnel of25

the Regional Civil Protection Office. The map reported 243 shallow landslides in an
area of about 212 km2 (see the minimum bounding rectangle in the left side of Fig. 1)
while the convex hull where landslides were observed has an area of about 123 km2.
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2.1.2 Study case 18 March 2013

The second rainfall event, hereafter 18MAR2013, occurred on 18 March 2013 and in-
volved the Garfagnana area belonging to the administrative province of Lucca (see
inset figure in the right side of Fig. 1). This is mainly a mountainous area (the average
elevation of the main catchment is 717 m) and, as Lunigiana, also this area is very5

close to the Ligurian Sea gulf. Long-time series of precipitation data recorded by local
rain-gauges report yearly average about 2000–2300 mm (Avanzi et al., 2013). Hydro-
logically, it is characterized by the presence of one main river basin (Serchio basin)
with an area of about 1565 km2 plus several other minor rivers.

Geological features of the area are very similar to the ones described in Sect. 2.1.110

for Lunigiana. For an extensive and deeper analysis see Di Naccio et al. (2013) and
references therein.

The 18MAR2013 rainfall event occurred during the month of March 2013, which
recorded the monthly highest precipitation amounts over the last 30 years (Re-
gione Toscana, 2013), for what concerns the north-western part of Tuscany and the15

Serchio and Magra basins in particular. During the period 5–19 March 2013, the rain-
gauges belonging to the administrative province of Lucca and to the Serchio river
basin, registered about 310 mm of precipitation against an average monthly value of
about 80 mm (climatology is based on the period 1983–2012). This relevant amount
of precipitation was the result of two major rain-storms that affected the area of inter-20

est: the first one occurring in the period 11–12 March 2013, the second one occurring
on 18 March 2013 (the one under exam here). Due to the high degree of saturation
of the soils and due to the surface runoff, on 18 March 2013, several regional hydro-
meters exceeded the warning levels and flooding alerts were issued by the local Civil
Protection Office (Regione Toscana, 2013) for 5 rivers (Ombrone Pistoiese, Bisenzio,25

Serchio, Magra, Cecina). As can be argued from synoptic analysis, the 18MAR2013
rainfall event was determined firstly by a warm front over the northern Tyrrhenian Sea
and Ligurian Sea, driven by a deep low over Great Britain (988 hPa at 06:00 UTC).
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Then in the second part of the day the cold front hit the Tuscany region, while the
precipitations ended by the late evening/night. The regional rain-gauges network reg-
istered hourly precipitation intensities up to 31 mm h−1 (rain-gauge located near the
Monte Macine peak at 1480 m a.s.l.), whereas the average hourly precipitation inten-
sity among the available pluviometers was about 9 mm h−1. See Table 3 for summary5

statistics on observed and modelled 1 h precipitation intensities.
The landslide inventory map for this event was created by the expert personnel of

the local Genio Civile Office. The map reported 127 shallow landslides in an area of
about 2038 km2 (see the minimum bounding rectangle in the right side of Fig. 1), while
the convex hull where landslides were observed has an area of about 1416 km2.10

2.2 Description of the geographical static predictors

In the following, we list the geographical static predictors considered in the statistical
modeling of landslide hazard. We divided them in four groups: geomorphology, hydrol-
ogy, geology and climate related predictors. The layers are raster datasets and were
produced using GIS technologies. The pixel resolution of each layer is 30 m, if not15

otherwise specified.
An extensive and exhaustive discussion about the choice of the input parameters

(typology and number of predictors) in susceptibility assessment studies can be found
in Catani et al. (2013) and we used this work as a main reference for the choice of the
predictors. Here we recall that the usefulness of some predictors is still debated and20

can depend on the methodology adopted or the area of investigation and its landslide
features. Moreover the number of predictors taken into account is also debated and it
has been also found that increasing the number of predisposing factors could lead to
a worsening of the prediction accuracy (Floris et al., 2011). For this reason, in landslide
susceptibility assessment, it is important to implement an automated procedure for the25

selection of the meaningful variables. As discussed in more detail in Sect. 2.4, we
chose two suitable methods: the logistic regression with an AIC selection (the GLM
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model) and the RF algorithm, since it naturally estimates the variable’s importance for
predictive classification.

All the predictors here described are schematically listed in Table 4.
Geomorphology-related predictors:

– Elevation (DEM): this dataset is a hydrologically corrected 30 m Digital Elevation5

Model, resampled from an original database produced at 10 m of resolution. Ele-
vation is a very common parameter often taken into account in landslide suscep-
tibility assessments (Catani et al., 2013; Felicísimo et al., 2013), since it is related
to several predisposing factors such as average precipitation, vegetation, etc. . .

– Altitude above channel network (AaCN): the algorithm for producing the altitude10

above channel network uses the channel network for streams. It measures the
altitude for each grid cell of the DEM to the nearest channel network elevation.
A splines interpolation surface is created, called Channel Network Base Level,
then this value is subtracted from the DEM to obtain the Altitude Above Channel
Network. This parameter has been used in recent works of landslide susceptibility15

assessment by Marjanovic et al. (2011) and Mărgărint et al. (2013)

– Aspect (ASP): it represents the orientation of each cell with respect to the adja-
cent cells. It influences the landslide susceptibility because it determines how the
terrain is exposed to rainfall and solar radiation (Guzzetti et al., 1999) and thus to
soil water content20

– LS factor (LSF): it represents the topographic factor (length-slope factor) from the
Revised Universal Soil Loss Equation (RUSLE) according to Moore and Wilson
(1992). Despite the fact that the RUSLE equation is commonly used to predict
soil erosion on an cell-by-cell basis, recently a high correlation has been found
between (R)USLE-based soil erosion map and landslide locations (Pradhan et al.,25

2012)
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– Planar curvature (PLAC): basically it is the second derivative of DEM and corre-
sponds to the concavity/convexity of the land surface measured perpendicular to
aspect, i.e. parallel to the contour. Catani et al. (2013) used this parameter (and
its standard deviation) in their landslide susceptibility study based on RF model

– Profile curvature (PRFC): it is a common morphological layer derived from the5

digital elevation model. It describes the shape of the relief in the direction of the
steepest slope. It corresponds to the concavity/convexity of the land surface mea-
sured parallel to aspect, i.e. perpendicular to the contour. It is known to affects the
flow velocity of water and influences erosion and deposition. It has been used in
several landslide assessment studies among which we recall Catani et al. (2013)10

who used this parameter (and its standard deviation) in their landslide suscepti-
bility study based on RF model

Hydrology-related predictors:

– Convergence index (COVI): this index represents the convergence/divergence
with respect to overland flow. It is similar to plan or horizontal curvature, but gives15

much smoother results. The calculation uses the aspects of surrounding cells and
looks to which degree the surrounding cells point to the center cell. The result is
given as percentages, negative values correspond to convergent flow conditions,
positive to divergent ones. This predictor has been recently used in landsliding
susceptibility maps by Nefeslioglu et al. (2011)20

– Time of concentration (ToC): it measures the response of a watershed to a rainfall
event. It measures the time (in hour) needed by a rainfall drop to reach the clo-
sure of a watershed from the farther point of it. It is a function of the topography,
geology, and land use within the watershed. It is considered as one of the most
critical factor for the estimation of the duration of the triggering rainfall (D’Odorico25

and Fagherazzi, 2003)
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– Topographic Wetness Index (TWI): it is commonly used to quantify topographic
control on hydrological processes. It is calculated by using the formula:

TWI =
a

tanβ
(1)

where a is the local upslope contributing area and β is the local slope angle. This5

index is related to the soil moisture (Nefeslioglu et al., 2008; Yilmaz, 2010). The
main limitation of the above formula is that it assumes a steady-states conditions
and uniform soil properties. However researchers denote that the formula is ap-
plicable in a wide range of cases and it has been used in assessment in landslide
susceptibility mapping (Nefeslioglu et al., 2012).10

– Distance from drainage channel network (DfCN): this is the euclidean distance
from rivers network. The distances from rivers have been evaluated by computing
the minimum distance between cells and the nearest watercourse. This layer has
been considered in similar works as a predisposing factor, because it takes into
account possible activating mechanism related to erosion along the slope foot15

(Mancini et al., 2010). Recently it has been used by several authors as a predictor
in landslide susceptibility mapping (Floris et al., 2011; Catani et al., 2013; Demir
et al., 2013; Devkota et al., 2013).

Geology-related predictors: this group of predictors includes data from two regional
databases produced by the Tuscany administration: the Regional Geological Contin-20

uum (scale is 1 : 10000) and the regional pedological database (scale is 1 : 50000).
The Regional Geological Continuum is the joint effort of several local institutions (uni-
versities, research institutes, private entities, coordinated and leaded by the regional
administration) and was recently updated with extensive field campaigns covering
about 70 % of the territory. This database is freely available through web facilities. The25

regional pedological database (level 2) has been revised during the period 2009–2012.
It was derived using data collected over sample areas of the territory. On average,
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the sample areas extent were about 15–25 km2 and 20 to 40 observations were per-
formed with the standard of 2 to 4 vertical profiles. The controls consisted of soil strati-
graphic profiles, described, sampled and analyzed from wells or exploratory drillings.
In a second stage of the work, an unsupervised classification of the whole territory was
performed and further corrected by expert personell.5

– Distance from main tectonic features (DfTF): this is the euclidean distance from
main tectonic features. This layer has been used by Costanzo et al. (2012) for
landslide susceptibility modelling on large scale, resulting as an effective factor
for translational slides.

– Bedrock litho-technical map (BLT): it comprehends 15 different classes of bedrock10

based on litho-technical properties derived from bibliography. This layer is time-
invariant and it has been considered as a relevant causal factor in predictive
hazard models assuming that future landslide are likely to occur in the past and
present instability sites (Guzzetti et al., 1999). Catani et al. (2005) acknowledged
the bedrock lithology as a strong controlling factor on landslide occurrence in their15

study for the Arno river basin (Tuscany region)

– Landslides main scarps (LMS): this layer represents the exposed portions of the
surface of rupture. These features are obtained with automated procedures from
landslide crowns and DEM

– Soil permeability (SKST): this predictor is derived from the regional pedological20

database and has been determined using HYRES pedo-transfer function (PDTf).
The term “permeability” as used in soil surveys, indicates saturated hydraulic con-
ductivity (Ksat). In other words, it indicates the rate of water movement, centime-
ters per hour, when the soil is saturated.

– Landslides and superficial deposits (LaSD): this layer takes into account the pres-25

ence of landslide bodies, or areas where superficial formations (debris cones,
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talus, colluvial and eluvial deposits, etc. . . ) outcrop. The use of this layer in sus-
ceptibility assessment studies is justified by the hypothesis that future landslides
will be likely to occur under the same conditions that led to past landslide events
(Varnes et al., 1984; Carrara et al., 1991)

– Slope Structural Setting (SSS): it represents the relation between the structural5

setting and the slope aspect (Cruden and Hu, 1998). This factor is rarely consid-
ered in large scale susceptibility analysis due to the difficulty of data acquisition
and its expression in a continuous surface (Atkinson and Massari, 1998; Guzzetti
et al., 1999; Donati and Turrini, 2002). In this study the SSS factor was obtained by
the spatialization of the attitude data available in the regional database, taking into10

account all the elements that lead to the rupture of the geological substrate con-
tinuity. The continuous surface realized was then combined with the slope aspect
and slope gradient to obtain information about the relation between landslides
and different combinations of slope structural setting.

Climate-related predictors: recently rainfall climatology has been considered into land-15

slide susceptibility models as a predisposing factor instead as a triggering factor
(Schicker and Moon, 2012; Catani et al., 2013). In fact the average precipitation values
describe the attitude of the territory to be hit by a storm of a given type. In the following,
we included a set of variables accounting for the precipitation amount (expressed in
mm) of a rainfall event occurring in a defined time interval (expressed in hours) and20

having a defined returning period (expressed in years). In this, our predictor is slightly
different from that one considered by Catani et al. (2013) who evaluated the returning
period of a defined precipitation amount occurring in a defined time interval.

– Rainfall 12, 24, 48, 96 h duration and 100 years return period (R12, R24, R48,
R96): this dataset is the result of rainfall frequency analysis (Baldi et al., 2014). It25

estimates the amount of rainfall falling at a given point for a specific duration and
returning period. In the present study, the durations considered are 12, 24, 48 and
96 h and the returning period is 100 years. It was derived from statistical analysis
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of rainfall time series of regional rain-gauges network (30 years minimum), that
were interpolated over the area of interest.

Besides the above mentioned layers, we included in the static predictors two additional
thematic maps:

– Corine land cover (COR): land cover provides information on vegetation and takes5

into account human activity on hills slope. It is considered a predisposing fac-
tor and has been used for landslides probability of occurrence mapping (Varnes
et al., 1984; Costanzo et al., 2012; Catani et al., 2013). In the present study we de-
rived a raster layer of land cover with 45 classes starting from the original Corine
dataset (Bossard et al., 2000) at scale 1 : 10000.10

– Vegetation Index (EVI): the EVI vegetation index is derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) on board of the Terra and Aqua
satellite (Huete et al., 2002). The index is designed for providing accurate mea-
surements of regional to global scale vegetation dynamics (phenology). Concep-
tually it is complementary to the well known Normalized Difference Vegetation15

Index (NDVI) from which differs because it is more responsive to canopy struc-
tural variations, including leaf area index (LAI), canopy type, plant physiognomy,
and canopy architecture (Gao et al., 2000). Formally it is a difference of Near
Infrared, red and blue atmosphere-corrected surface reflectances. In the present
paper we used a layer derived from the temporal climatology of the index, us-20

ing the available satellite imagery for the time series starting from February 2000
and ending in December 2013. Time series data are aggregated to 16 days to
minimize cloud contamination. The spatial resolution of the layer is 250 m. Veg-
etation status, density and health is considered a predisposing factor for shallow
landslide and debris flows because it is basically a proxy for wetness. It reflects25

the variation in subsurface water and because deep-rooted vegetation bind collu-
vium to bedrock. Vegetation index (namely NDVI and in particular its radiometric
signature), has been used as an aid to the visual detection of landslides and for

5000

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/2/4987/2014/nhessd-2-4987-2014-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/2/4987/2014/nhessd-2-4987-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
2, 4987–5036, 2014

Statistical modeling
of shallow landslides

using static
predictors and NWP

outputs

V. Capecchi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the semi-automatic classification of satellite images into stable or unstable slopes
(Borghuis et al., 2007; Mondini et al., 2011; Guzzetti et al., 2012).

2.3 Description of the NWP model and of the numerical weather predictors

The limited-area numerical model used in this study is the Weather and Research
Forecasting (WRF) model (Skamarock et al., 2005; Skamarock and Klemp, 2008).5

It is the result of the joint efforts of US governmental agencies and university. It is
a fully compressible, Eulerian, non-hydrostatic mesoscale model, specifically designed
to provide accurate numerical weather forecast both for research activities, with the
dynamical core Advanced Research WRF (ARW), and for operations, with the dy-
namical core Non-hydrostatic Mesoscale Model (NMM). In the present work we used10

the WRF-ARW core updated at version 3.5 (April 2013). The model dynamics, equa-
tions and numerical schemes implemented in the WRF-ARW core are fully described
in Skamarock et al. (2005), Klemp et al. (2007) and Skamarock and Klemp (2008).
The model physics, including the different options available, is described in Chen and
Dudhia (2000).15

A summary of the model’s settings chosen for the present study is shown in Table 1,
while the geographical extent of the simulation area is depicted in Fig. 2. Here we briefly
recall that the horizontal spatial resolution adopted (3 km) is known to be adequate
to resolve explicitly the convective processes (Kain et al., 2008; Bryan and Morrison,
2012).20

Initial and lateral boundary conditions were obtained from the ECMWF-IFS (Euro-
pean Centre for Medium-Range Weather Forecasts-Integrated Forecasting System)
global model. The spectral resolution of the global model is T1279, which roughly cor-
responds to 16 km of horizontal resolution; vertical levels are 91. Since one of the
main purposes of this work is to investigate the potential ability of the regional nu-25

merical model to predict in advance possible landslides triggered by heavy rainfall, as
boundary conditions, we used the forecast (not analysis) provided by the ECMWF-IFS
model. The analysis time is 00:00 UTC 24 October 2011 for the 25OCT2011 event and
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00:00 UTC 17 March 2013 for the 18MAR2013 event. The length of the simulations is
48 h for both events.

The choice of the geographical static instability factors has been discussed in
Sect. 2.2. For what concerns the NWP predictors, in this preliminary stage of the in-
vestigation, we subjectively decided to include a minimal set of explanatory variables,5

namely: precipitation amounts cumulated over the rainfall event, mean and maximum
hourly precipitation intensity, mean and maximum soil moisture in four layers below
ground. Soil moisture is evaluated in the following four layers: 0–10, 10–40, 40–100 and
100–200 cm below ground. This is the partition of soil implemented in the Noah land
surface model (Chen et al., 1996) and the WRF model incorporates and runs this10

model for what concerns the the physical processes occurring in the interface between
land and the near surface atmosphere. A summary of the meteorological predictors is
reported in Table 4 (bottom part of the table)

2.4 Description of the statistical modeling of landslide hazard

For the two rainfall events under exam, we developed a landslide hazard modeling15

based on a quantitative indirect statistical model (Carrara et al., 1991; Guzzetti et al.,
1999). In other words, using separately the GLM model and the RF classifier, we con-
struct a statistical functional relationship between instability factors (such as geological,
geomorphological, climatological thematic layers and NWP outputs) with the distribu-
tion of landslides as obtained from the event inventory maps. A consequence of this20

approach is the mapping unit which is forced to be grid-cells. It is important to underline
again that no statistical downscaling is performed to nudge the NWP outputs (3 km of
horizontal resolution) to the resolution of the static instability factors (30 m of horizon-
tal resolution). The final result of the modeling is a map showing the classification of
the area of interest into domains of different hazard degree ranging between 0 (stable25

slopes) to 1 (unstable slopes). In bibliography this type of map is also referred as land-
slide hazard map. Schematically a flow chart of the forecasting chain of the statistical
modeling is sketched in Fig. 3. Summarizing, we developed, implemented and tested
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two different statistical models: one is based on the GLM model, the other is based on
Breiman’s RF. The GLM was chosen because it is widely known and acknowledged in
landslide susceptibility mapping (see below for references). The RF classifier was cho-
sen because it is very flexible, recently used in landslide susceptibility mapping and
has interesting and useful diagnostics (see below). No interactions were implemented5

between the two models.
The GLM model (McCullagh, 1984; McCullagh and Nelder, 1989) is a statistical tech-

nique used to model the relation between a response variable L and a set of explana-
tory variables {Xi}, i = 1, . . . ,n. In the present case, L is the presence/absence of land-
slide, while the {Xi} variables are the static parameters detailed in Sect. 2.2 and the10

NWP outputs detailed in Sect. 2.3. The GLM with a logit link function is one of the most
frequently used techniques in landslide susceptibility modeling and it has been largely
and successfully applied; see for example the review paper by Brenning (2005). In the
present work, logistic regression is performed after applying an automatic stepwise
backward variable selection based on the Akaike Information Criterion (AIC).15

The RF classifier (Breiman, 2001) belongs to the family of machine learning algo-
rithms. It is based on classification trees (Breiman et al., 1984) and on the idea of
bagging (i.e. bootstrap-aggregation) predictors (Breiman, 1996). A RF is an ensemble
of classification trees, where each tree is constructed from a random subset of the ob-
servations (i.e. the dependent variable) and at each node of the tree only a random20

subset of the predictors (i.e. the independent variables) is used. The data not chosen
to construct the tree (“out-of-bag”) is used to asses the predictive skill of the tree. The
most common classification among all the tree is the prediction of the RF.

Schematically some features and advantages of the RF technique are: (a) it han-
dles both continuous and categorical predictors naturally, (b) no formal distributions of25

variable’s predictors is assumed, (c) it has an automatic variable selection and handles
missing values, (d) it does not need a cross-validation of the results but has a built-in es-
timate of model’s accuracy, (e) there is little need to fine-tune parameters to achieve ex-
cellent performances, (f) it incorporates highly non-linear interactions among predictors
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and (g) it is designed to work with “wide” data, i.e. when the cardinality of the predic-
tors is much larger than the cardinality of the variable to be predicted (Díaz-Uriarte
and De Andres, 2006). To our purposes, an important feature of the RF algorithm is
the variable importance, which is a natural output of the procedure and measures the
deterioration of the predictive ability of the model when each predictor is replaced in5

turn by random noise.
This method has been extensively used in bibliography in a variety of applications

ranging from bioinformatics (Díaz-Uriarte and De Andres, 2006) to remote sensing
(Pal, 2005; Gislason et al., 2006; Ghimire et al., 2010) and ecology (Cutler et al., 2007;
Peters et al., 2007; Moriondo et al., 2008) just to mention an, incomplete, list of applica-10

tion fields. For what concerns mapping of landslides, this method was used by Stumpf
and Kerle (2011a, b), who used the RF technique to implement an automatic land-
slide inventory mapping on the basis of very high resolution remote sensing imagery.
Vorpahl et al. (2012) used the RF classifier (and several other statistical methods) to
analyze the driving factors of natural landslides. They took into account, as predictors,15

the terrain attributes derived from a digital elevation model and trained the RF model
on a set of five historical landslide inventories. Brenning (2005) applied the RF clas-
sifier to produce susceptivity maps in Ecuador using geomorphometric attributes and
information on land-use. Recently, Catani et al. (2013) applied the RF algorithm to pro-
duce landslide susceptibility maps for the Arno river basin (about 9100 km2) at different20

mapping unit ranging from 10 to 500 m. They considered a variety of predisposing fac-
tors mainly related to the lithology, the land use, the geomorphology, the structural and
anthropogenic constrains.

Apart from the literature survey in RF area, we stress the fact that we applied the
RF method in a “black box” approach and further work is needed to properly use this25

powerful and easy-to-use tool. This especially for what concerns the choice of the
predictors and the choice of the number of input variable tried at each split of the
classification tree. Nevertheless, as it is shown in Sect. 3.2 and discussed in Sect. 4,
this method provided interesting results and gave hints for meaningful discussions.
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In the present work, we used the R translation (Liaw and Wiener, 2002) of the original
RF code developed by L. Breiman and A. Cutler.

In both statistical methods, GLM and RF, we used, as predictors, the same set of
layers detailed in Sects. 2.2 and 2.3 and summarized in Table 4.

3 Results5

Since one of the crucial points to properly forecast the rainfall-triggered landslides is an
accurate prediction of spatial patterns and temporal intensity of rainfall (Crozier, 1999),
in Sect. 3.1 we briefly present the validation of the WRF predictions for the selected
dates. In Sect. 3.2 we present the landslide hazard maps for the two events along with
their accuracy in terms of ROC plots and the corresponding underlying area.10

3.1 Evaluation of the forecasting skills of NWP outputs

Using the remotely automated weather station network operated by the National Civil
Protection Department, we were able to evaluate the predictive skills of the WRF model
in terms of quantitative precipitation forecast (QPF).

Considering the rainfall occurred during the 25OCT2011 event (from 00:00 UTC 2515

October 2011 to 00:00 UTC 26 October 2011), it was possible to collect 20 rain-gauges
recording precipitation every hour (see the locations of the rain-gauges in Fig. 4). For
a visual comparison between the rainfall data simulated by the WRF forecast with the
observed rainfall data collected in the 20 rain-gauges see Fig. 5a, for WRF data and
Fig. 5b for observations. The ability of the model to simulate the precipitation’s amount20

was analyzed using the contingency tables (Wilks, 2011) for selected rainfall’s thresh-
olds. For each rain-gauge locations, we extracted the predicted values of the numerical
simulation and compared them with the observed rainfall amounts (24 h accumulated
precipitation). In Fig. 6, we show the False Alarm Rate and Probability of Detection
for selected rainfall thresholds. In Table 2, we show the descriptive statistics (average25
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values and percentiles) of the observed and modelled rainfall data for the selected rain-
gauge locations. From the analysis of the previous plot and table, it is quite clear how
the model largely underestimates the rainfall amounts for high thresholds (greater than
50 mm) and overestimates precipitation for low thresholds (roughly precipitations below
50 mm or similarly below the 1 quantile of observed data). Nevertheless if we extract5

the modelled data in the larger area affected by the 25OCT2011 event (see the inset
rectangle in the picture in the left side of Fig. 1), we can see from Table 2 the shift of
the predicted data towards higher values. This can be addressed to a lack of the model
in predicting the exact locations of the deep convection processes. On the other hand,
we can state that the model is able to capture the characteristics of heavy rainfall event10

in the area of interest. In particular the maximum value obtained in the model data
(218 mm 24 h−1) is similar to that one obtained by Buzzi et al. (2014), who analyzed
the same rainfall event with the ISAC convection-permitting MOLOCH model (Buzzi
et al., 2004). In their paper, the authors found a maximum rainfall amount of 286 mm
24 h−1. It has to be noticed, nevertheless, that they used the ECMWF-IFS analysis at15

12:00 UTC 24 October 2011 (instead of 00:00 UTC 24 October 2011 as done here) and
that their model horizontal resolution is 1.5 km (instead of 3 km as setup here).

For the 25OCT2011 event, a special regard was devoted to the verification of the
rainfall intensities (mm h−1) predicted by the model. In the rain-gauges dataset we can
observe very high rainfall intensities (up to 67 mm h−1 in the Pontremoli rain-gauge20

station). On average, over the 20 rain-gauges considered, the Root Mean Square Error
(RMSE) of modelled data is around 6 mm h−1 (summary statistics of both observed and
modelled 1 h rainfall amounts are shown in Table 3).

For the 18MAR2013 event it was possible to collect 60 rain-gauges recording pre-
cipitation every hour (see the locations of the rain-gauges in Fig. 4). As shown for25

the 25OCT2011 case, for a visual comparison between the rainfall data simulated by
the WRF forecast with the observed rainfall data collected in the 60 rain-gauges see
Fig. 5c for WRF data and Fig. 5d for observations.Beside the visual comparison, here
we show the results obtained when validating the modelled data, output of the WRF
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simulation, with respect to these observed data. Considering the rainfall registered by
the rain-gauges during the event (from 00:00 UTC 18 March 2013 to 00:00 UTC 19
March 2013), the distribution, in terms of percentiles, of the model data and of the
observed data is summarized in Table 2. The RMSE is 40 mm 24 h−1 and the corre-
lation coefficient is 0.63. The False Alarm Rate and Probability of Detection plots are5

shown in Fig. 7 where FAR and POD skill scores are computed and plotted against
selected thresholds ranging from the rounded minimum (10 mm) to the rounded maxi-
mum (130 mm) of the modelled data.

3.2 Evaluation of landslide hazard maps

Considering the extent of the areas of interest, the resolution of both static predictors10

and NWP outputs and considering the statistical models adopted, landslide hazard
maps were produced requiring less than 10 min of CPU time on a HPC multi-core
Linux server.

The results for the study case 25OCT2011 are shown in Fig. 8a for the GLM model
and 8b for the RF model. While the results for the study case 18MAR2013 are shown15

in Fig. 9a for the GLM model and 9b for the RF model. In the maps, we subjectively
masked out the pixels where slope is below 6 %. Corresponding ROC plots are shown
with the values of the AUC for each curve. In the maps, values range from 0 (green
color) indicating pixels classified as stable slopes to 1 (light gray color) indicating pixels
classified as unstable slopes. For the study case 25OCT2011 AUC value is 0.909 for20

the GLM model, whereas it is 0.968 for the RF classifier. For the 18MAR2013 study
case, AUC values are lower: 0.833 for GLM, 0.764 for RF.

As outlined previously in Sect. 2.4, one of the main features of the RF algorithm is
the variable importance output. It measures the importance of each variable to perform
a correct classification in the tree when the model is validated on the OOB (out-of-25

bag) data. Alternatively its measure is based on the decrease of classification accuracy
when the variables in a node of a tree are permuted randomly (Breiman, 2001). Among
the four different measures of variable importance implemented in the code, we chose
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the default one: increased node purity (IncNodePurity), see RF’s manual (Breiman,
2002) for details.

Figure 10 shows the variables importance for the two study cases: 25OCT2011 (top)
and 18MAR2013 (bottom). For 25OCT2011 the total number of important (e.g effec-
tive) variables is 23. Ten of them are related to the dynamical NWP predictors, namely:5

mean and maximum hourly rainfall intensity and mean and maximum soil moisture
in the four layers 0–10, 10–40, 40–100 and 100–200 cm below ground. Four of the
variables are geomorphology-related predictors, namely: elevation, topography factor,
slope, concavity/convexity of the land parallel to aspect. Also geology-related predic-
tors are four, namely: geological continuum, soil permeability, distance from main tec-10

tonic features and landslides main scarps. Three of the variables are climate-related
predictors, namely: the precipitation amounts with a returning period of 100 years and
occurring in 12, 48 and 96 h. Finally, two are hydrology-related predictors, namely: time
of concentration and Topography Wetness Index. All these layers are highlighted in Ta-
ble 4 with the ∗ symbol. For 18MAR2013, nine predictors are classified as important15

by the RF algorithm. Two are dynamical NWP predictors, namely mean and maximum
soil moisture in the layer 0–10 cm below ground. Two are geomorphological predictors
(e.g. elevation and the altitude above channel network), one is the climatological pre-
cipitation amounts of a rainfall event occurring in 24 h and having a returning period
of 100 year, one is the time of concentration (hydrology-related predictor), one is the20

euclidean distance from the main tectonic features and the last two are the vegetation
index and the land cover. All these layers are highlighted in Table 4 with the • symbol.

4 Discussions

We developed a statistical framework for the modeling and prediction of shallow land-
slides triggered by heavy precipitations. We considered as input predictors both static25

thematic layers such as geomorphology, hydrology, geology and climate related predis-
posing factors and dynamical information provided by NWP short term forecast, namely
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precipitation amounts and soil water content. We combined these predictors together
by means of two different statistical models: the well known and widely used General-
ized Linear Model and Breiman’s Random Forest. In the procedure implemented, the
two models have no interactions between each other and are tested separately (see
Fig. 3 for a schematic flowchart of the modeling). We chose the GLM model because it5

has be proven (see references cited in Sect. 2.4) to provide reliable results in landslides
susceptibility assessment, while the RF algorithm has been recently and successfully
applied in landslide research and applications (Stumpf and Kerle, 2011b; Catani et al.,
2013). We tested the whole procedure for two study cases occurred in Tuscany region
(central Italy) in the recent past. The two events were characterized by heavy precip-10

itations that induced several shallow landslide and debris flows as reported by after-
event field surveys and inventory maps (see Fig. 1). The statistical modeling produced
landslide hazard maps, i.e. a partition of the territory in different degrees of landslide
susceptibility ranging from stable slopes to high unstable slopes. More specifically, the
study is aimed at testing and evaluating the information content provided by numeri-15

cal weather predictions in landslide assessment. This aim is justified by the fact that
recently NWP data are arising as a promising and reliable source of information for
real-time forecasting chain of rainfall induced shallow landslides (Schmidt et al., 2008;
Segoni et al., 2009; Mercogliano et al., 2013). The use of NWP data is justified in the
setting up of landslides warning systems over large areas (i.e. basin scale) and when20

both a spatial and a temporal forecasting of shallow landslide occurrence is desirable.
In the above cited bibliography, NWP data were basically considered only for what con-
cerns precipitation amounts. Schmidt et al. (2008) used a regional model assimilating
NWP data to feed a physically-based model to simulate basin hydrology on the basis
of rainfall forecast forcing. Segoni et al. (2009) combined both rainfall fields observed25

from meteorological ground-based radar and high resolution rainfall forecast, statisti-
cally downscaled, to feed hydro-geological models to yield a factor of safety for the area
of interest. Mercogliano et al. (2013) presented a similar forecasting chain composed
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by a downscaling procedure of NWP rainfall data to feed a geo-technical model to gain
a factor of safety on a pixel-by-pixel basis.

Our study differs from the above mentioned because: (i) we consider not only NWP
rainfall amounts but also NWP hourly rainfall intensities and NWP soil moisture in four
layers below ground, (ii) we do not perform any statistical downscaling of the NWP data5

towards the mapping unit and (iii) we combine both static predictors and NWP data into
a “black-box” statistical model.

As described in Sects. 2.1.1 and 2.1.2, the study cases selected show different fea-
tures: 25OCT2011 was characterized by deep atmospheric convection and heavy pre-
cipitations cumulated over a short time interval and in a, relatively, small area (hundred10

of km2), while 18MAR2013 was characterized by a weather storm with precipitation
spread over a 24 h period and affecting a larger area (thousand of km2).

Considering the area under the Receiver Operating Characteristics curve (AUC
area) as a good representative index of the accuracy of landslide probabilistic forecast
(Frattini et al., 2010), results here achieved are similar to those find in recent bibliog-15

raphy. For the 25OCT2011 study case, the AUC values obtained are quite high both
for the GLM model (AUC= 0.909) and, even better, for the RF classifier (AUC= 0.968).
For the 18MAR2013 case AUC values are lower: 0.833 for the GLM model and 0.761
for the RF classifier. Rossi et al. (2010) in an area with an extension about 100 km2

applied four different statistical methods for landslide susceptibility zonation in central20

Italy. In the validation set (i.e. observed landslides were divided into a training set to
tune the models and into a validation set to validate the models themselves) the authors
obtained AUC values around 0.74, whereas in the training set AUC values were higher
(from 0.84 for the linear discriminant model to 0.99 for the neural network model). In
this latter study the mapping unit was “slope unit” which is not comparable to that one25

adopted in the present study. Frattini et al. (2010) applied five debris-flow susceptibility
models (both statistical and physically based) in an area extending for about 300 km2

in the north of Italy and with a grid cells resolution of 10 m. They obtained AUC values
ranging from 0.64 for a physically based model to 0.84 for a discriminant model. For
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what concerns studies regarding small areas of interest (below basin scale with an ex-
tension around 10 km2), Mondini et al. (2011) in their study regarding a semi-automatic
mapping of rainfall induced shallow landslides using optical satellite images, obtained
AUC values around 0.87 in the training area and around 0.82 in the validation area.
They used four different statistical methods (linear discriminant analysis, quadratic dis-5

criminant analysis, logistic regression and a combined regression model) with a quite
high mapping resolution (0.6 m) and their study area was located in south Italy (Sicily).
More recently, Catani et al. (2013) in their study investigating the landslide susceptibil-
ity in Tuscany by using the RF technique, found AUC values ranging from 0.74 to 0.97
when increasing the number of samples required to calibrate a model. The resolution10

of their study was 50 m, which is comparable to that one here adopted (30 m).
In the susceptivity maps produced (see Fig. 8a and b in particular), the pixelated

shape of some areas is due to the fact that no downscaling is performed to the NWP
outputs (produced at 3 km of horizontal resolution) towards the resolution of the static
thematic layers (30 m of horizontal resolution). Nevertheless this coarse approximation15

is not affecting dramatically the results as demonstrated by the AUC values achieved.
Summarizing, from the comparison with recent state-of-art studies we can conclude

that our findings are encouraging and justify the statistical models adopted for the area
under exam.

However, as stated in the introduction, the aim of this work was also to establish the,20

possible, positive impact of NWP predictions on landslide susceptibility assessment.
Following the variable importance provided by the RF technique, from Fig. 10 we state
that NWP information is crucial for the 25OCT2011 event and marginal, even if not null,
for the 18MAR2013 event. In fact for 25OCT2011 10 out of 23 relevant predisposing
factors were derived from NWP contents, see Table 5 for a list of such predictors in25

decreasing order of importance. Not surprisingly the total amount of precipitation over
the rainfall event is not occurring in the list, whereas the mean and the maximum hourly
rainfall intensity are ranked in the top list, since, as described in Sect. 2.1.1 and in ref-
erences cited, the 25OCT2011 was characterized by deep convection activity with high
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precipitation rates. For what concerns the 18MAR2013, the impact of NWP factors are
marginal. The soil moisture content in the first 10 cm below ground is the only variable
occurring in the importance ranking (see Fig. 10 in the bottom). This result confirms
the findings of recent studies investigating the strong linkage between soil moisture and
landslide occurrence (Ray and Jacobs, 2007; Ray et al., 2010). In particular Ponziani5

et al. (2012) in analyzing the role of antecedent soil moisture conditions at regional
scale, assessed the soil moisture content to be as important as rainfall intensity for
the triggering of landslides. Our study presents the opportunity to integrate NWP soil
moisture forecast information content into a statistical method to take account of the re-
lationship between rainfall, soil moisture and landslide movement. The rainfall forecast10

here produced are validated in Sect. 3.1, for what concerns the ability of a numerical
regional model to estimate soil moisture content, the reader is referred to Schneider
et al. (2014).

5 Final considerations and future developments

As stated in the previous section, the statistical framework developed and the predis-15

posing factors considered were able to model the shallow landslide occurrence trig-
gered by heavy precipitations at basin scale (at least for the two study cases consid-
ered). Results obtained are encouraging and are similar to those find in recent studies.
We assessed the relative importance of NWP content information (not downscaled sta-
tistically) and we concluded that the benefits might be relevant in particular in rainfall20

events characterized by high precipitation rates (25OCT2011 in this study). We there-
fore tried to bridge the gap between the micro-γ scale (≤ 20 m), which is the charac-
teristic scale of landslide occurring at basin scale, with the meso-γ, which is the typical
scale of the NWP forecast. Results here shown, demonstrate that this gap could be
filled also thanks to the help of black-box statistical modelling. In spite of the simplic-25

ity of such statistical approach, the drawback of the method proposed is that, being
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data-driven, a model built up for one region and for one particular event, cannot be
applied, without any re-calibration, to a neighboring area or for a similar rainfall event.

Moreover, it has to be kept in mind that these results were achieved without any algo-
rithm or model calibrations. A possible tuning of the whole forecasting system may rely
on the improvement of NWP performances. For example, since antecedent soil con-5

dition is one of the crucial factor for determining landslide-triggering rainfall thresholds
(Glade et al., 2000), the NWP’s initial soil moisture could be better estimated by means
of the assimilation of remote sensed data at regional scale (Schneider et al., 2014). On
the other hand, nowadays, global models have sophisticated assimilation algorithms
to ingest observed soil water content estimates and to produce “warm” analysis of soil10

conditions (Dharssi et al., 2011; de Rosnay et al., 2013). As pointed out by Segoni
et al. (2009), in order to gain a more accurate temporal and spatial knowledge of the
triggering rainfall, EPS (Ensemble Prediction Systems) or RUC (Rapid Updated Cycle)
numerical forecasting chains could be adopted. This latter methodology could be fur-
ther improved by means of the assimilation of radar data (Segoni et al., 2009) to keep15

antecedent soil moisture conditions as close to reality as possible.
Before the setting-up of the forecasting chain here developed into a fully operative

warning system, further well-documented severe rainfall events need to be addressed
and the results have to be validated with ground observations.
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Table 1. Basic options of the numerical WRF simulations.

Variable Value

projection Lambert
rows× columns 440×400
vertical levels 35
horizontal resolution 3 km
time step 18 s
cumulus convection explicit (no parameterization)
micro-physics option Thompson (Thompson et al., 2008)
boundary-layer option Yonsei University (Hong et al., 2006)
land-surface option Unified Noah model (Chen et al., 1996)
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Table 2. Statistics of the observed and modelled 24 h rainfall amounts for both study cases.

25OCT2011 Min 1st Qu Median Mean 3rd Qu Max

Observed data 21.4 68.6 105.0 153.3 176.8 374.8
Modelled data 40.9 50.8 61.1 63.5 69.3 112.1
Modelled data 18.2 43.8 59.3 70.4 90.7 218.9
(whole area)

18MAR2013 Min 1st Qu Median Mean 3rd Qu Max

Observed data 0.0 49.9 64.6 73.0 85.0 284.8
Modelled data 13.6 21.0 38.0 43.7 59.6 127.6
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Table 3. Statistics of the observed and modelled 1 h rainfall amounts for both study cases.

25OCT2011 Min 1st Qu Median Mean 3rd Qu Max

Observed data 6.4 26.0 28.6 31.7 33.2 67.2
Modelled data 10.7 16.4 18.9 21.7 26.5 41.8

18MAR2013 Min 1st Qu Median Mean 3rd Qu Max

Observed data 0.2 6.6 8.7 9.3 10.5 30.6
Modelled data 2.1 3.9 6.2 6.9 8.1 20.7
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Table 4. List of the predictors taken into account in both GLM model and RF classifier for
landslide hazard mapping. Using the RF’s variable importance parameter, predictors relevant
for the 25OCT2011 rainfall event have a ? symbol, whereas those relevant for the 18MAR2013
event have a • symbol.

Geomorphology-related predictors
Variable/Code Short description Unit of measure

dem_30m_topo/DEM ?• Digital elevation model m
h_channel_geo/AaCN• Altitude above channel network m
aspect_topo/ASP Aspect –
slope_topo/SLP? Slope –
ls_factor_geo/LSF? Topography factor from RUSLE –
plan_curv_geo/PLAC concavity/convexity of the land perpendicular to aspect h m−1

prof_curv_geo/PRFC? concavity/convexity of the land parallel to aspect h m−1

Hydrology-related predictors
Variable/Code Short description Unit of measure

conv_index_geo/COVI convergence/divergence to overland flow –
tc_geo/ToC• Time of concentration h
TWI_geo/TWI? Topographic Wetness Index –
d_aste_fluvi_geo/DfCN Euclidean distance from river network m

Geology-related predictors
Variable/Code Short description Unit of measure

d_lineamenti_tettonici_geo/DfTF?• Euclidean distance from main tectonic features m
litho_geo_int/BLT ? Geological continuum of Tuscany Region categorical/16 classes
a_distacco_geo/LMS ? Landslides main scarps boolean
pedopaesaggi_int/SKST ? Soil permeability categorical/7 classes
quaternario_frane_geo/LaSD Landslides and superficial deposits categorical/2 classes
assetto_geo/SSS Slope Structural Setting categorical/7 classes

Climate-related predictors
Variable/Code Short description Unit of measure

p12h_100_clima/R12 ? Rainfall 12 h duration and 100 years return period mm
p24h_100_clima/R24 • Rainfall 24 h duration and 100 years return period mm
p48h_100_clima/R48 ? Rainfall 48 h duration and 100 years return period mm
p96h_100_clima/R96 ? Rainfall 96 h duration and 100 years return period mm

Other predictors
Variable/Code Short description Unit of measure

corine_c_landscape/COR • Corine Land Use categorical
evi_media_land/EVI • Vegetation Index –

NWP predictors
Variable/Code Short description Unit of measure

r_arw3km_SOILW0_10cm?• Soil moisture 0–10 cm below ground layer m3 m−3

r_arw3km_SOILW10_40cm? Soil moisture 10–40 cm below ground layer m3 m−3

r_arw3km_SOILW40_100cm? Soil moisture 40–100 cm below ground layer m3 m−3

r_arw3km_SOILW100_200cm? Soil moisture 100–200 cm below ground layer m3 m−3

r_arw3km_APCP Precipitation amounts mm (24 h)−1

r_arw3km_APCP.RI? Precipitation intensity mm h−1
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Table 5. List of the ten NWP input predictors classified as “important” by the RF classifier for
the 25OCT2011 event.

Coded name Description Importance (ranking)

r_arw3km_APCP.RI.mean mean hourly rainfall intensity 1
r_arw3km_SOILW100_200cm.max maximum soil moisture (100–200 cm below ground) 3
r_arw3km_SOILW40_100cm.max maximum soil moisture (40–100 cm below ground) 6
r_arw3km_APCP.RI.max max hourly rainfall intensity 11
r_arw3km_SOILW0_10cm.max maximum soil moisture (0–10 cm below ground) 15
r_arw3km_SOILW10_40cm.max maximum soil moisture (10–40 cm below ground) 16
r_arw3km_SOILW40_100cm.mean mean soil moisture (40–100 cm below ground) 17
r_arw3km_SOILW10_40cm.mean mean soil moisture (10–40 cm below ground) 19
r_arw3km_SOILW0_10cm.mean mean soil moisture (0–10 cm below ground) 20
r_arw3km_SOILW100_200cm.mean mean soil moisture (100–200 cm below ground) 22
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14 Capecchi et al.: Statistical modeling of shallow landslides using static predictors and NWP outputs

Fig. 1. Italy domain with the two areas of interest: in the inset figure on the left side, it is shown the Lunigiana area belonging to the
administrative province of Massa-Carrara. This area was interested by the event 25OCT2011. In the inset figure on the right, it is shown the
Garfagnana area belonging to the administrative province of Lucca. This area was interested by the event 18MAR2013. In both inset figures
it is depicted the extent (rectangular shaped area) where the statistical models were implemented and tested, while the cross signs represent
the observed landslides.

Fig. 2. Area of the WRF simulations. The horizontal spatial resolu-
tion of the model’s run is 3 km.

Fig. 3. Flowchart of the statistical modeling of shallow landslide
triggered by rainfall. Input data are indicated with the □ symbol,
statistical models are indicated with the ♢ symbol and output data
are indicated with the parallelogram symbol.

Figure 1. Italy domain with the two areas of interest: in the inset figure on the left side, it
is shown the Lunigiana area belonging to the administrative province of Massa-Carrara. This
area was interested by the event 25OCT2011. In the inset figure on the right, it is shown the
Garfagnana area belonging to the administrative province of Lucca. This area was interested by
the event 18MAR2013. In both inset figures it is depicted the extent (rectangular shaped area)
where the statistical models were implemented and tested, while the cross signs represent the
observed landslides.
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14 Capecchi et al.: Statistical modeling of shallow landslides using static predictors and NWP outputs

Fig. 1. Italy domain with the two areas of interest: in the inset figure on the left side, it is shown the Lunigiana area belonging to the
administrative province of Massa-Carrara. This area was interested by the event 25OCT2011. In the inset figure on the right, it is shown the
Garfagnana area belonging to the administrative province of Lucca. This area was interested by the event 18MAR2013. In both inset figures
it is depicted the extent (rectangular shaped area) where the statistical models were implemented and tested, while the cross signs represent
the observed landslides.

Fig. 2. Area of the WRF simulations. The horizontal spatial resolu-
tion of the model’s run is 3 km.

Fig. 3. Flowchart of the statistical modeling of shallow landslide
triggered by rainfall. Input data are indicated with the □ symbol,
statistical models are indicated with the ♢ symbol and output data
are indicated with the parallelogram symbol.

Figure 2. Area of the WRF simulations. The horizontal spatial resolution of the model’s run is
3 km.
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14 Capecchi et al.: Statistical modeling of shallow landslides using static predictors and NWP outputs

Fig. 1. Italy domain with the two areas of interest: in the inset figure on the left side, it is shown the Lunigiana area belonging to the
administrative province of Massa-Carrara. This area was interested by the event 25OCT2011. In the inset figure on the right, it is shown the
Garfagnana area belonging to the administrative province of Lucca. This area was interested by the event 18MAR2013. In both inset figures
it is depicted the extent (rectangular shaped area) where the statistical models were implemented and tested, while the cross signs represent
the observed landslides.

Fig. 2. Area of the WRF simulations. The horizontal spatial resolu-
tion of the model’s run is 3 km.

Fig. 3. Flowchart of the statistical modeling of shallow landslide
triggered by rainfall. Input data are indicated with the □ symbol,
statistical models are indicated with the ♢ symbol and output data
are indicated with the parallelogram symbol.

Figure 3. Flowchart of the statistical modeling of shallow landslide triggered by rainfall. Input
data are indicated with the � symbol, statistical models are indicated with the ♦ symbol and
output data are indicated with the parallelogram symbol.
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Figure 4. Locations of the rain-gauges (closed circles) for the two study cases: 25OCT2011
in gray, 18MAR2013 in black. Crosses indicate the location of the landslides for the two study
cases: 25OCT2011 in gray, 18MAR2013 in black.
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Figure 5. (a) and (b): modelled and observed precipitation in mm accumulated in the 24 h pe-
riod starting at 00:00 UTC of 25 October 2011. (c) and (d): modelled and observed precipitation
in mm accumulated in the 24 h period starting at 00:00 UTC of 18 March 2013.
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Fig. 6. Study case 25OCT2011: False Alarm Rate (top) and Prob-
ability of Detection (bottom) skills obtained when validating the
accumulated 24-h rainfall predicted by the WRF model with the
rainfall data observed at rain-gauge locations displayed in figure 4.
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Fig. 7. Study case 18MAR2013: False Alarm Rate (top) and Prob-
ability of Detection (bottom) skills obtained when validating the
accumulated 24-h rainfall predicted by the WRF model with the
rainfall data observed at rain-gauge locations displayed in figure 4.

Figure 6. Study case 25OCT2011: False Alarm Rate (top panel) and Probability of Detection
(bottom panel) skills obtained when validating the accumulated 24 h rainfall predicted by the
WRF model with the rainfall data observed at rain-gauge locations displayed in Fig. 4.
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Fig. 6. Study case 25OCT2011: False Alarm Rate (top) and Prob-
ability of Detection (bottom) skills obtained when validating the
accumulated 24-h rainfall predicted by the WRF model with the
rainfall data observed at rain-gauge locations displayed in figure 4.
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Fig. 7. Study case 18MAR2013: False Alarm Rate (top) and Prob-
ability of Detection (bottom) skills obtained when validating the
accumulated 24-h rainfall predicted by the WRF model with the
rainfall data observed at rain-gauge locations displayed in figure 4.

Figure 7. Study case 18MAR2013: False Alarm Rate (top panel) and Probability of Detection
(bottom panel) skills obtained when validating the accumulated 24 h rainfall predicted by the
WRF model with the rainfall data observed at rain-gauge locations displayed in Fig. 4.
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20 Capecchi et al.: Statistical modeling of shallow landslides using static predictors and NWP outputs

Fig. 8. 25OCT2011 landslide hazard maps and corresponding Receiver Operating Characteristics Curves (ROC) with the values of the
underlying area (AUC). Results from the GLM model (a) and from the RF classifier (b). Crosses points are the event inventory maps
produced by field surveys a few days after the rainfall event.

Fig. 9. 18MAR2013 landslide hazard maps and corresponding Receiver Operating Characteristics Curves (ROC) with the values of the
underlying area (AUC). Results from the GLM model (a) and from the RF classifier (b). Crosses points are the event inventory maps
produced by field surveys a few days after the rainfall event.

Figure 8. 25OCT2011 landslide hazard maps and corresponding Receiver Operating Char-
acteristics Curves (ROC) with the values of the underlying area (AUC). Results from the GLM
model (a) and from the RF classifier (b). Crosses points are the event inventory maps produced
by field surveys a few days after the rainfall event.
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20 Capecchi et al.: Statistical modeling of shallow landslides using static predictors and NWP outputs

Fig. 8. 25OCT2011 landslide hazard maps and corresponding Receiver Operating Characteristics Curves (ROC) with the values of the
underlying area (AUC). Results from the GLM model (a) and from the RF classifier (b). Crosses points are the event inventory maps
produced by field surveys a few days after the rainfall event.

Fig. 9. 18MAR2013 landslide hazard maps and corresponding Receiver Operating Characteristics Curves (ROC) with the values of the
underlying area (AUC). Results from the GLM model (a) and from the RF classifier (b). Crosses points are the event inventory maps
produced by field surveys a few days after the rainfall event.

Figure 9. 18MAR2013 landslide hazard maps and corresponding Receiver Operating Char-
acteristics Curves (ROC) with the values of the underlying area (AUC). Results from the GLM
model (a) and from the RF classifier (b). Crosses points are the event inventory maps produced
by field surveys a few days after the rainfall event.
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Fig. 10. RF’s variable importance for classification of landslide occurrence in the 25OCT2011 study case (top) and in the 18MAR2013 study
case (bottom). The meaning of the variables on the y-axis is reported in table 4, while extended descriptions are reported in sections 2.2 and
2.3.

Figure 10. RF’s variable importance for classification of landslide occurrence in the
25OCT2011 study case (top panel) and in the 18MAR2013 study case (bottom panel). The
meaning of the variables on the y axis is reported in Table 4, while extended descriptions are
reported in Sects. 2.2 and 2.3.
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